Keyword

Other meteorological measurements

19 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 19
  • Navigation, meteorological and underway system data from the R/V Atlantic Explorer acquired during the FIGURE-CARING 2022 Eurofleets+ cruise.

  • The (JGOFS)-[http://ijgofs.whoi.edu/]), 2, focus on small scale biogeochemical processes, in particular at a daily scale, 3, study the influence of nitrogen, phosphorus and iron on oceanic fertility and 4, conduct a calibration/validation operation for the SeaWIFS (Sea-viewing Wide Field-of-View Sensor) color sensor. To reach these objectives, the studied areas, as well as the cruise plan, were designed : To investigate different trophic regimes, to investigate systems characterized by different degrees of limitation in nitrogen and phosphorus and to study stable ("steady state") systems for a sufficiently long period. The cruise track encompassed a variety of trophic systems ranging from eutrophic conditions associated to the Moroccan upwelling to the typical ultra-oligotrophic conditions of the eastern Mediterranean sea during summer stratification. Two main types of stations were occupied : 9 short (4-hour) stations. These sites were occupied around the solar noon and were essentially designed to conduct objectives 1 (JGOFS process studies) and 4 (SeaWIFS validation/calibration) 3 "long" (5-day) stations, where all four objectives were investigated with a particular emphasis on objectives 2 (processes at a daily scale) and 3 (nutrient resources and oceanic fertility). Between each station, continuous multiparametric (hydrological, optical, biological and chemical) surface acquisitions were performed. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Galata platform real time data is one of the most important sources of multi-parameter operational information in the Black Sea which will serve for monitoring, verification and improvement of modeling results and forecasts as well as for collecting long time series of data needed for climatic research. It also provides useful real time information for marine industry and safety.

  • Two ice mass balance instruments (part of IAOOS7 and IAOOS8 platforms) deployed near 83°N on the same ice floe, documented the evolution of snow and ice conditions in the Arctic Ocean north of Svalbard in Jan-Mar 2015. Frequent profiles of temperature (every 3 hours) and temperature change after 30s and 120s heating (once a day) were recorded. The ratio of the temperature changes after heating provides a proxy for thermal diffusivity. Both instruments documented flooding and snow-ice formation. Flooding was clearly detectable in the simultaneous changes in thermal diffusivity proxy, increased temperature, and heat propagation through the underlying ice. Slush then progressively transformed into snow-ice. Flooding resulted from two different processes; i) after storm-induced break-up of snow-loaded floes for IAOOS8 and ii) after loss of buoyancy due to basal ice melt for IAOOS7. The instrument on IAOOS7 documented basal sea-ice melt over warm Atlantic waters and ocean-to-ice heat flux peaked at up to 400 Wm-2 in winter. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • We defined the interfaces between the air/snow, snow/ice, and ice/ocean and calculated the ocean heat flux for two SIMBA recordings (SIMBA2015a and SIMBA_2015f) of repeated temperature profiles at 6h interval and 2cm vertical resolution, during N-ICE 2015 experiment floe1. The snow/ice interface is derived from the sharp contrast in the diffusivity proxy values between both media. The snow/ice interface does not change except for slush formation associated with flooding events. The air/snow interface is calculated using simultaneous information from the vertical gradient of the temperature and the standard deviation over 24, 48, and 72 h period. Snow accumulation of more than 10 centimeters happened at different time for the 2 SIMBA. The ice/ocean interface is estimated from temperature profiles alone since the winter sea-ice remains colder than the ocean. The ocean just below the ice is at or just above the freezing temperature (estimated from a near surface conductivity-temperature-depth (CTD) sensor see Koenig et al. [2016]). The method detects (1) the first sensor, downward of the snow/ice interface, with a temperature above the ocean freezing temperature and (2) the last sensor in the ice with a temperature below the mean ocean temperature by at least twice the ocean temperature standard deviation in that profile. The ice/ocean interface is then defined as half way between the last sensor in the ice and the first sensor in the ocean. Note it take 3-4 days for the deployment hole to refreeze. Then the ice thickness remains constant up to 20 February when floe1 breaks. Simba_2015f stops working and SIMBA_2015a features basal melt events corresponding to temperature changes in the ocean. The consistency of the 3 interfaces estimate is validated with the thermal diffusivity proxy and the vertical and temporal derivatives of temperature. The ocean heat flux is derived from the latent heat flux which is directly proportional to the change in time of the ice/ocean interface depth and the conductive heat flux in the lower portion of the ice estimated 6 cm above the ice/ocean interface. The ocean heat flux values for SIMBA_2015a and SIMBA2015f range from -50 to 350 W/m2, and -50 to 150 W/m2 respectively, while the basal melt events associated with ocean temperature increase stand out in SIMBA_2015a.   The SIMBA data are available through the Norwegian Polar Institute’s data center (https://data.npolar.no/dataset/6ed9a8ca-95b0-43be-bedf-8176bf56da80) and the method of interface detection is thoroughly described in Provost et al. (2017). Note that all time series have been smoothed with a 36-h running mean.   Provost, C., N. Sennechael, J. Miguet, P. Itkin, A. Rosel, Z. Koenig, N. Villacieros-Robineau, and M. A. Granskog (2017), Observations of flooding and snow-ice formation in a thinner Arctic sea-ice regime during the N-ICE2015 campaign: Influence of basal ice melt and storms, J. Geophys. Res. Oceans, 122, 7115–7134, doi:10.1002/2016JC012011. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • The MALINA oceanographic campaign was conducted during summer 2009 to investigate the carbon stocks and the processes controlling the carbon fluxes in the Mackenzie River estuary and the Beaufort Sea. During the campaign, an extensive suite of physical, chemical and biological variables was measured across seven shelf–basin transects (south-north) to capture the meridional gradient between the estuary and the open ocean. Key variables such as temperature, absolute salinity, radiance, irradiance, nutrient concentrations, chlorophyll-a concentration, bacteria, phytoplankton and zooplankton abundance and taxonomy, and carbon stocks and fluxes were routinely measured onboard the Canadian research icebreaker CCGS Amundsen and from a barge in shallow coastal areas or for sampling within broken ice fields. This dataset is the results of a joint effort to tidy and standardize the collected data sets that will facilitate their reuse in further studies of the changing Arctic Ocean. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • This dataset is included the following meteorological parameters: wind speed, wind direction, visibility, total clouds cover, air temperature, sea level pressure, pressure tendency, amount of pressure tendency, present weather(code), sea surface temperature, height of wind waves and etc. Ship Callsign:"UANA". Research vessel:"Fridtjof Nansen".

  • This dataset is included the following meteorological parameters:wind speed,wind direction,visibility,total clouds cover,air temperature,dew point temperature,sea level pressure,pressure tendency,amount of pressure tendency,present weather,sea surface temperature,height of wind waves,direction of primary swell waves,concentration of arrangement of sea ice. Research vessel: "Akademik Fedorov". Call sign: "UCKZ".

  • This dataset is included the following meteorological parameters: wind speed, wind direction, visibility, total clouds cover, air temperature, sea level pressure, pressure tendency, amount of pressure tendency, present weather(code), sea surface temperature, height of wind waves,direction of primary swell waves and etc. Research vessel:"Viktor Buynitsky". Callsign:"UAJX".

  • Meteorological data of the R/V "Mikhail Somov" in the Arctic. This dataset is included the following meteorological parameters:Wind Speed,Wind Direction,Visibility,Total Clouds Cover,Air Temperature,Sea Level Pressure,Pressure Tendency,Amount of Pressure Tendency,Present Weather,Height of Wind Waves.